Geometry of Orbits of Permanents and Determinants

Shrawan Kumar, UNC

Let \mathfrak{v} be a complex vector space of dimension m and let $E := \mathfrak{v} \otimes \mathfrak{v}^* = \operatorname{End} \mathfrak{v}$. Consider det $\in Q := S^m(E^*)$, where det is the function taking determinant of any $X \in \operatorname{End} \mathfrak{v}$. Fix a basis $\{e_1, \ldots, e_m\}$ of \mathfrak{v} and a positive integer n < m and consider the function $\mathfrak{p} \in Q$, defined by $\mathfrak{p}(X) = x_{1,1}^{m-n} \operatorname{perm}(X^o)$, X^o being the component of X in the right down $n \times n$ corner, where any element of End \mathfrak{v} is represented by a $m \times m$ -matrix $X = (x_{i,j})_{1 \leq i,j, \leq m}$ in the basis $\{e_i\}$ and perm denotes the permanent. The group $G = \operatorname{GL}(E)$ canonically acts on Q. Let \mathcal{X}_{det} (resp. \mathcal{X}_p) be the G-orbit closure of det (resp. \mathfrak{p}) inside Q. Then, \mathcal{X}_{det} and \mathcal{X}_p are closed (affine) subvarieties of Q which are stable under the standard homothecy action of \mathbb{C}^* on Q. Thus, their affine coordinate rings $\mathbb{C}[\mathcal{X}_{det}]$ and $\mathbb{C}[\mathcal{X}_p]$ are nonnegatively graded G-algebras over the complex numbers \mathbb{C} .

The aim of this talk is to study some geometric results about the varieties \mathcal{X}_{det} and \mathcal{X}_{p} and to study $\mathbb{C}[\mathcal{X}_{det}]$ and $\mathbb{C}[\mathcal{X}_{p}]$ as *G*-modules. The work is motivated by the geometric approach initiated by Mulmuley-Sohoni to solve the Valiant's conjecture in Geometric Complexity Theory.